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Abstract—Treatment of 1-chlorovinyl p-tolyl sulfoxides, which were derived from ketones and chloromethyl p-tolyl sulfoxide in high
yields, with lithium a-carbanion of nitriles gave the adducts in quantitative yields. The adducts were converted to a-bromocyclo-
propyl p-tolyl sulfoxides in two steps in good yields. Finally, the sulfoxides were treated with excess lithium carbanion of isobutyro-
nitrile to afford fully substituted cyanoallenes in high to quantitative yields via sulfoxide–lithium exchange reaction. This
procedure offers a novel synthetic method for fully substituted cyanoallenes with coupling of three components (ketones, chloro-
methyl p-tolyl sulfoxide, and nitriles) in good overall yields.
� 2006 Elsevier Ltd. All rights reserved.
Allenes are very interesting and highly important com-
pounds in organic and synthetic organic chemistry.1

Moreover, the allenyl structure is frequently found in
natural products and pharmaceuticals.2 In view of the
importance of allenes, a large number of studies have
been reported on their chemistry and synthesis.1,2 The
general methods for the synthesis of allenes are, for
example, isomerization of acetylenes,3 ring-opening of
cyclopropylidenes,4 the reaction of propargylic deriva-
tives with organocopper reagents,5 and b-elimination
of olefins.6 We recently reported a novel method for syn-
thesis of allenes by the reaction of magnesium alkylidene
carbenoids with lithium a-sulfonyl carbanions.7

Although many methods for the preparation of allenes
have appeared as above, it is still difficult to synthesize
fully substituted (tetra-substituted) allenes having sev-
eral functional groups.

Previously, we reported a new method for synthesis of
allenes from 1-chlorocyclopropyl phenyl sulfoxides via
magnesium cyclopropylidenes.8 Recently, we have been
investigating the development of new synthetic methods
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with 1-chlorovinyl p-tolyl sulfoxides with nitriles.9 In
continuation of our interest in the development of new
synthetic method of allenes, we recently studied a com-
bination of our two strategies described above and a no-
vel synthetic method for fully substituted cyanoallenes
from three components, ketones, chloromethyl p-tolyl
sulfoxide, and nitriles was realized. The essence of this
method is shown in Scheme 1.

Thus, 1-chlorovinyl p-tolyl sulfoxides 3 were synthesized
from ketones 1 and chloromethyl p-tolyl sulfoxide 2 in
three steps in over 90% overall yields.10 Reaction of 3
with lithium a-carbanions of nitriles gave the adducts
4 in nearly quantitative yields. Treatment of the adducts
4 with t-BuOK in a mixture of THF–t-BuOH gave
cyclopropyl sulfoxides, which were brominated with
LDA–CBr4 to afford a-bromocyclopropyl p-tolyl sulfox-
ides 5 in over 80% yields. Finally, sulfoxides 5 were trea-
ted with lithium a-carbanion of isobutyronitrile to give
the fully substituted cyanoallenes 7 via lithium cycloprop-
ylidene 6 in high yields.

The details of this investigation are described by using 1-
chlorovinyl p-tolyl sulfoxide 8 as a representative exam-
ple (Scheme 2). 1-Chlorovinyl p-tolyl sulfoxide 8 was
synthesized from cyclopentadecanone in high overall
yield.10,11 Treatment of 8 with 2.5 equiv of lithium a-
carbanion of propionitrile in THF at �78 �C for
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10 min afforded the adduct 9 in 95% yield as a mixture
of two diastereomers. The adduct 9 was then treated
with 5 equiv of t-BuOK in a mixture of THF–t-BuOH.
The intramolecular SN2 reaction took place to give the
desired cyclopropane having p-tolyl sulfinyl group 10
in high yield. The cyclopropyl sulfoxide 10 was chlori-
nated with NCS12 in THF to give the chloride 11a in
quantitative yield.

First, based on our experience with the synthesis of
allenes from a-chlorocyclopropyl phenyl sulfoxides with
CN
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Scheme 3. Treatment of a-chlorocyclopropyl p-tolyl sulfoxide 11a with alky
Grignard reagent,8 11a was treated with PhMgCl at 0 �C
for 1 h (Scheme 3). All the starting materials 11a disap-
peared to give a magnesium cyclopropylidene 13a; how-
ever, no desired allene 12 was observed. Instead,
chlorocyclopropane 14 was obtained in 65% yield.
Treatment of 11a with t-BuLi also gave 14 or a complex
mixture without the desired allene 12 via a lithium cyclo-
propylidene 13b.
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In our previous letter,8 magnesium cyclopropylidenes
rearranged to allenes at above �60 �C; however, in this
study, highly substituted cyclopropylidenes having a cy-
ano group (13a and 13b) were found to be quite stable
and no rearrangement occurred.

Next, the cyclopropyl sulfoxide 10 was brominated by
treatment with LDA followed by carbon tetrabromide
to give the bromide 11b as a mixture of diastereomers
in 85% yield (Scheme 2). This bromide was treated with
Grignard reagent or alkyllithium and the results are
summarized in Table 1. The bromide 11b was treated
with PhMgCl or i-PrMgBr (entries 1–3). Again, the
main product was desulfinylated bromocyclopropane
16. However, in these cases a trace amount of the de-
sired allene 12 was observed. From these results, again,
the magnesium cyclopropylidene 15a appeared to be
unexpectedly stable.

Next, the bromide 11b was treated with t-BuLi (entries
4–7). The result shown in entry 4 is quite interesting.
Treatment of the bromo-sulfoxide 15b with t-BuLi at
�78 �C gave cyclopropane 17 as a main product in
Table 1. Treatment of a-bromocyclopropyl p-tolyl sulfoxide 11b with alkylm
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8 (CH3)2C(Li)CN (10) rt, overnight

Table 2. Synthesis of fully substituted cyanoallenes 19 from 1-chlorovinyl p-to
lithium a-carbanion of isobutyronitrile
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67% yield. This result implied that both sulfoxide-lith-
ium exchange and bromine–lithium exchange reaction
took place at the same time at �78 �C. Indeed, by treat-
ment of 11b with t-BuLi at �50 �C and �30 �C (entries 5
and 6) the yield of 17 was diminished and the yield of the
desired allene 12 was increased. The yield of 12 was 44%
when the reaction was conducted at room temperature
(entry 7).

At this stage of our investigation, we thought that if a
nucleophile (alkyllithim) that attacked only sulfoxide
was used in this reaction, the desired allene 12 could
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to a solution of 11b in THF portionwise at room tem-
perature to give a quite clean reaction mixture, from
which the desired allene 12 was obtained in quantitative
yield (entry 8).13
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showed the result described above with the overall yield
for the synthesis of the bromocyclopropyl p-tolyl sulfox-
ide from 8. Entry 2 shows the result using hexanenitrile
as the nitrile to give the tetra-substituted allene 19a in
good overall yield. The fully substituted cyanoallenes
were synthesized from cyclodecanone (entry 3) and
cyclohexanone (entry 4) with propionitrile or hexanenit-
rile. By using 4-phenyl-2-butanone and hexanenitrile in
this procedure, the fully substituted allene 19d was ob-
tained in high overall yield. It is interesting to note that
all the substituents of the allene 19d are different, butyl,
cyano, methyl, and 2-phenylethyl groups.
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